Python破解验证码 教程

本课程通过一个简单的例子来实现破解验证码。从中我们可以学习到 Python 基本知识,PIL 模块的使用和破解验证码的原理。本项目难度中等。适合有 Python 基础的人群进行学习。

 

先学知识:需要先学习 Python 基础课程,例如 Python3 简明教程

课程难度:本课程难度为一般,属于初级级别课程。

面向用户:本课程适合具有 Python 基础的用户,熟悉 Python 基础知识并加深巩固。

 

一、实验说明

 

实验内容

生活中,我们在登录微博,邮箱的时候,常常会碰到验证码。在工作时,如果想要爬取一些数据,也会碰到验证码的阻碍。本次试验将带领大家认识验证码的一些特性,并利用 Python 中的 pillow 库完成对验证码的破解。

 

实验知识点

本节实验中将学习和实践以下知识点:

  • Python 基本知识
  • PIL 模块的使用

 

实验环境

Python 2.7

Pillow 模块

Xfce 终端

 

适合人群

本课程难度为一般,属于初级级别课程,适合具有 Python 基础,想对 Python 基础知识加深巩固的用户。

 

二、开发准备

 

安装 pillow(PIL)库:

sudo apt-get update
sudo apt-get install python-dev libtiff5-dev libjpeg8-dev zlib1g-dev libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python-tk
sudo pip2 install pillow

 

可以在这里下载实验用的验证码文件:

http://labfile.oss.aliyuncs.com/courses/364/python_captcha.zip

 

以下这是我们实验使用的验证码 captcha.gif

captcha.gif

 

三、项目文件结构

Python破解验证码 项目文件结构

 

四、实验步骤

下面我们会开始项目的实现,一步一步去破解验证码。

 

1、提取文本图片

将验证码文件下载到 /homeiyanlou/Code/ 目录下,解压后,在 python_captcha 目录新建 crack.py 文件,进行编辑。

cd /home/shiyanlou/Code
wget http://labfile.oss.aliyuncs.com/courses/364/python_captcha.zip
unzip python_captcha.zip
touch crack.py

 

#-*- coding:utf8 -*-
from PIL import Image

im = Image.open("captcha.gif")
#(将图片转换为8位像素模式)
im.convert("P")

# 打印颜色直方图
print im.histogram()

输出:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0 , 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 1, 3, 3, 0, 0, 0, 0, 0, 0, 1, 0, 3, 2, 132, 1, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 15, 0 , 1, 0, 1, 0, 0, 8, 1, 0, 0, 0, 0, 1, 6, 0, 2, 0, 0, 0, 0, 18, 1, 1, 1, 1, 1, 2, 365, 115, 0, 1, 0, 0, 0, 135, 186, 0, 0, 1, 0, 0, 0, 116, 3, 0, 0, 0, 0, 0, 21, 1, 1, 0, 0, 0, 2, 10, 2, 0, 0, 0, 0, 2, 10, 0, 0, 0, 0, 1, 0, 625]

 

颜色直方图的每一位数字都代表了在图片中含有对应位的颜色的像素的数量。

每个像素点可表现 256 种颜色,你会发现白点是最多(白色序号 255 的位置,也就是最后一位,可以看到,有 625 个白色像素)。红像素在序号 200 左右,我们可以通过排序,得到有用的颜色。

his = im.histogram()
values = {}

for i in range(256):
    values[i] = his[i]

for j,k in sorted(values.items(),key=lambda x:x[1],reverse = True)[:10]:
    print j, k

输出:

255 625
212 365
220 186
219 135
169 132
227 116
213 115
234 21
205 18
184 15

 

我们得到了图片中最多的 10 种颜色,其中 220 与 227 才是我们需要的红色和灰色,可以通过这一讯息构造一种黑白二值图片。

#-*- coding:utf8 -*-
from PIL import Image

im = Image.open("captcha.gif")
im.convert("P")
im2 = Image.new("P",im.size,255)


for x in range(im.size[1]):
    for y in range(im.size[0]):
        pix = im.getpixel((y,x))
        if pix == 220 or pix == 227: # these are the numbers to get
            im2.putpixel((y,x),0)

im2.show()

得到的结果:

验证码

 

2、提取单个字符图片

接下来的工作是要得到单个字符的像素集合,由于例子比较简单,我们对其进行纵向切割:

inletter = False
foundletter=False
start = 0
end = 0

letters = []

for y in range(im2.size[0]): 
    for x in range(im2.size[1]):
        pix = im2.getpixel((y,x))
        if pix != 255:
            inletter = True
    if foundletter == False and inletter == True:
        foundletter = True
        start = y

    if foundletter == True and inletter == False:
        foundletter = False
        end = y
        letters.append((start,end))

    inletter=False
print letters

输出:

[(6, 14), (15, 25), (27, 35), (37, 46), (48, 56), (57, 67)]

得到每个字符开始和结束的列序号。

 

import hashlib
import time

count = 0
for letter in letters:
    m = hashlib.md5()
    im3 = im2.crop(( letter[0] , 0, letter[1],im2.size[1] ))
    m.update("%s%s"%(time.time(),count))
    im3.save("./%s.gif"%(m.hexdigest()))
    count += 1

(接上面的代码)

对图片进行切割,得到每个字符所在的那部分图片。

 

3、AI 与向量空间图像识别

在这里我们使用向量空间搜索引擎来做字符识别,它具有很多优点:

  • 不需要大量的训练迭代
  • 不会训练过度
  • 你可以随时加入/移除错误的数据查看效果
  • 很容易理解和编写成代码
  • 提供分级结果,你可以查看最接近的多个匹配
  • 对于无法识别的东西只要加入到搜索引擎中,马上就能识别了。

 

当然它也有缺点,例如分类的速度比神经网络慢很多,它不能找到自己的方法解决问题等等。

 

关于向量空间搜索引擎的原理可以参考这篇文章:http://ondoc.logand.com/d/2697/pdf

Don't panic。向量空间搜索引擎名字听上去很高大上其实原理很简单。拿文章里的例子来说:

你有 3 篇文档,我们要怎么计算它们之间的相似度呢?2 篇文档所使用的相同的单词越多,那这两篇文章就越相似!但是这单词太多怎么办,就由我们来选择几个关键单词,选择的单词又被称作特征,每一个特征就好比空间中的一个维度(x,y,z 等),一组特征就是一个矢量,每一个文档我们都能得到这么一个矢量,只要计算矢量之间的夹角就能得到文章的相似度了。

 

用 Python 类实现向量空间:

import math

class VectorCompare:
    # 计算矢量大小
    def magnitude(self,concordance):
        total = 0
        for word,count in concordance.iteritems():
            total += count ** 2
        return math.sqrt(total)

    # 计算矢量之间的 cos 值
    def relation(self,concordance1, concordance2):
        relevance = 0
        topvalue = 0
        for word, count in concordance1.iteritems():
            if concordance2.has_key(word):
                topvalue += count * concordance2[word]
        return topvalue / (self.magnitude(concordance1) * self.magnitude(concordance2))

它会比较两个 python 字典类型并输出它们的相似度(用 0~1 的数字表示)

 

4、将之前的内容放在一起

还有取大量验证码提取单个字符图片作为训练集合的工作,但只要是有好好读上文的同学就一定知道这些工作要怎么做,在这里就略去了。可以直接使用提供的训练集合来进行下面的操作。

 

iconset 目录下放的是我们的训练集。

 

最后追加的内容:

# 将图片转换为矢量
def buildvector(im):
    d1 = {}
    count = 0
    for i in im.getdata():
        d1[count] = i
        count += 1
    return d1

v = VectorCompare()

iconset = ['0','1','2','3','4','5','6','7','8','9','0','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']

# 加载训练集
imageset = []
for letter in iconset:
    for img in os.listdir('./iconset/%s/'%(letter)):
        temp = []
        if img != "Thumbs.db" and img != ".DS_Store":
            temp.append(buildvector(Image.open("./iconset/%s/%s"%(letter,img))))
        imageset.append({letter:temp})


count = 0
# 对验证码图片进行切割
for letter in letters:
    m = hashlib.md5()
    im3 = im2.crop(( letter[0] , 0, letter[1],im2.size[1] ))

    guess = []

    # 将切割得到的验证码小片段与每个训练片段进行比较
    for image in imageset:
        for x,y in image.iteritems():
            if len(y) != 0:
                guess.append( ( v.relation(y[0],buildvector(im3)),x) )

    guess.sort(reverse=True)
    print "",guess[0]
    count += 1

 

全部代码:

from PIL import Image
import hashlib
import time
import os


import math

class VectorCompare:
    def magnitude(self,concordance):
        total = 0
        for word,count in concordance.iteritems():
            total += count ** 2
        return math.sqrt(total)

    def relation(self,concordance1, concordance2):
        relevance = 0
        topvalue = 0
        for word, count in concordance1.iteritems():
            if concordance2.has_key(word):
                topvalue += count * concordance2[word]
        return topvalue / (self.magnitude(concordance1) * self.magnitude(concordance2))



def buildvector(im):
    d1 = {}

    count = 0
    for i in im.getdata():
        d1[count] = i
        count += 1

    return d1

v = VectorCompare()


iconset = ['0','1','2','3','4','5','6','7','8','9','0','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']


imageset = []

for letter in iconset:
    for img in os.listdir('./iconset/%s/'%(letter)):
        temp = []
        if img != "Thumbs.db" and img != ".DS_Store": # windows check...
            temp.append(buildvector(Image.open("./iconset/%s/%s"%(letter,img))))
        imageset.append({letter:temp})


im = Image.open("captcha.gif")
im2 = Image.new("P",im.size,255)
im.convert("P")
temp = {}

for x in range(im.size[1]):
    for y in range(im.size[0]):
        pix = im.getpixel((y,x))
        temp[pix] = pix
        if pix == 220 or pix == 227: # these are the numbers to get
            im2.putpixel((y,x),0)

inletter = False
foundletter=False
start = 0
end = 0

letters = []

for y in range(im2.size[0]): # slice across
    for x in range(im2.size[1]): # slice down
        pix = im2.getpixel((y,x))
        if pix != 255:
            inletter = True

    if foundletter == False and inletter == True:
        foundletter = True
        start = y

    if foundletter == True and inletter == False:
        foundletter = False
        end = y
        letters.append((start,end))


    inletter=False

count = 0
for letter in letters:
    m = hashlib.md5()
    im3 = im2.crop(( letter[0] , 0, letter[1],im2.size[1] ))

    guess = []

    for image in imageset:
        for x,y in image.iteritems():
            if len(y) != 0:
                guess.append( ( v.relation(y[0],buildvector(im3)),x) )

    guess.sort(reverse=True)
    print "",guess[0]   #报错不能运行,请改为:print("",guess[0])

    count += 1

 

5、测试

一切准备就绪,运行我们的代码试试:

python crack.py

输出:

(0.96376811594202894, '7')
(0.96234028545977002, 's')
(0.9286884286888929, '9')
(0.98350370609844473, 't')
(0.96751165072506273, '9')
(0.96989711688772628, 'j')

是正解,干得漂亮。

 

注意:

Windows系统下运行测试的时候,会报如下几个错误:

第一个错误:

F:\python\80>python crack.py
  File "crack.py", line 102
    print "",guess[0]
           ^
SyntaxError: Missing parentheses in call to 'print'. Did you mean print("",guess[0])?

解决方法:将

print "",guess[0]

改为

print("",guess[0])

 

第二个错误:

F:\python\80>python crack.py
Traceback (most recent call last):
  File "crack.py", line 45, in <module>
    for img in os.listdir('./iconset/%s/'%(letter)):
FileNotFoundError: [WinError 3] 系统找不到指定的路径。: './iconset/0/'

解决方法:

这是因为iconset 目录下放的是我们的训练集。

大家可以自己去看,代码开始就用“os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表。”,如果你没有训练集,iconset 目录下就没有 0~9,a~z 的目录。

可以手工去创建 0~9,a~z 的目录,来解决这个问题。

 

总结:

我们用分割图片 + 向量识别的方式,实现了简易的验证码破解。然而现在的验证码越来越复杂,我们的方法明显处理不了更加复杂的验证码,这时候就需要我们在原有的基础上增添新的判别方式,提升系统的适应性。

    A+
发布日期:2020年01月16日 21:32:17  所属分类:Python实战案例
最后更新时间:2020-01-17 17:45:07
评分: (2 票;平均数5.00 ;最高评分 5 ;用户总数2;总得分 10;百分比100.00)
头像
PHP运行环境 wamp lamp lnmp 安装 配置 搭建
PHP运行环境 wamp lamp lnmp 安装 配置 搭建
  • ¥ 99.9元
  • 市场价:299元
wordpress站群服务 泛解析二级域名 二级目录
wordpress站群服务 泛解析二级域名 二级目录
  • ¥ 1999.9元
  • 市场价:8999元
Microsoft 全家桶 “激活码/产品密钥”永久
Microsoft 全家桶 “激活码/产品密钥”永久
  • ¥ 29.99元
  • 市场价:888元
花牛苹果 甘肃天水 李宏恩家自种 1斤 包邮
花牛苹果 甘肃天水 李宏恩家自种 1斤 包邮
  • ¥ 6.8元
  • 市场价:8.8元

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: